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Abstract 

Postprocessing of point-wise  data is a hndamental process in  many  fields of 
research.  Numerical  differentiation  is  a  key  operation in computational 
electromagnetics. In the case of data  obtained  from  a  finite  element  method  with 
automatic  mesh  refinement  much  work  needs  still to be  done.  This  paper  addresses 
some  issues  in  differentiating data obtained  from  a  finite  element  electromagnetic 
code with  adaptive  mesh  refinement,  and it proposes  a  methodology  for  deriving 
the electric  field  given the magnetic  field on a  mesh of linear  triangular  elements. 
The procedure itself  is  nevertheless  more  general  and  might  be  extended  for 
numerically  differentiating  any  point-wise  solution  based on triangular  meshes. 

Introduction 

Of all  the  finite  element  postprocessing  operations,  numerical  differentiation  is 
one of the most  important  and  for  this  reason it has  been  under  investigation  for 
many  years'". However,  numerical  differentiation  is  a  notoriously  difficult 
operation prone to error. In order to keep errors under control, much  effort  has 
been  invested  by  many  researchers.  According to Szabo  and  Babuska7,  all the 
methods can  be  separated in three groups: direct  differentiation  methods, 
smoothing  methods  based on superconvergence  properties  and  method  based on 
integral  transformations.  The  choice of the  method  depends  mostly on the 
application  and on the use of the derivatives.  Nevertheless,  no  special attention has 
been  dedicated so far to numerical  differentiation of data from  adaptively  refined 
meshes  in  electromagnetic  applications. 

This  paper  emphasizes  first  order  differentiation of finite  element  solutions 
based on a hghly irregular  triangular  mesh,  such as those obtainable  from an 
adaptive  mesh  refinement  process,  but  it  also  addresses  general  numerical  issues 
concerning  a  wider  set of point-wise  solutions  (such  as  from  experimental  data). 

mailto:borgioli@canyonlands.jpl.nasa.gov
mailto:cwik@jpl.nasa.gov


, 

Differentiation for irregular  meshes 

Finite  element  solutions are defined  in  terms of the  local  finite  element 
functions, so the simplest  natural  approach to differentiation  is to differentiate  the 
locally  valid  approximated  function.  However,  the  common case of first order 
h t e  elements  would  yield  constant  derivative on each  element  and therefore a 
discontinuous  solution over the  entire  mesh.  Various  forms of local  averaging 
between  elements  have  been  used to estimates  derivatives.  Methods  based on 
integral  transformations (on Green’s  second  identity)8 are extremely accurate even 
for  third  and  fourth  derivatives,  but  computationally  very  expensive. 

In general, to obtain good accuracy  it  is  necessary to write  a  relatively  complex 
postprocessing code and  this  sometimes  makes  numerical  differentiation 
unattractive.  Nevertheless,  derivatives  can  always  be constructed at low cost by 
differentiating the interpolative  polynomial  approximation of the point-wise data 
obtained via the  finite  element  method.  This  approach often works  well  for  first 
derivatives,  especially  for  structured  meshes or for  unstructured  meshes  with  a 
small  degree of anisotropy  (i.e.  where the density of mesh  doesn’t  change 
abruptly).  However,  meshes  obtained fi-om adaptive  mesh  refinement) often show 
a  pronounced  irregularity,  due to the simultaneous  presence of some areas that are 
finely  refined  and  others  that  are  coarsely  refined  (see  Fig. 1). 

Fig.  1 - A typical mesh structure  obtained  from  ad  adaptive mesh refinement 
(detailed  view of the  area  within  the  box  is  shown  in Fig.2) 

The  interpolation of such hghly irregular  meshes  exhibits  a  certain  numerical 
instability, so that  an  algorithm  that  works  well  for  a  regular  finite  element  mesh 
might  not  work as well  for  an  adaptively  refined  mesh.  The  reason of this  is  purely 
numerical.  Considering  triangular  meshes,  the  derivative  evaluated  at  a certain 
point  can be obtained  from  the  polynomial  that  locally  fits the vertices of all the 
elements  that  surround  that  point.  Such  a  local  polynomial  is of fixed order p and it 
is  computed  by  solving  a  linear  system  with  a  least-squares  algorithm.  Since the 
areas of transition  between  refined  regions  and coarse regions are characterized by 
a  large  number of relatively  distant  nodes  (Fig.1) , it  might happen  that  a 
polynomial of order p cannot  fit  these  distant  points if they  exhibit  a  wide  range in 
the value of the field.  The  result  is an interpolating  polynomial  that  accurately 
reconstructs the field  locally  everywhere  except  in  these  particular  points,  where  it 
might  exhibit  a  relevant  error  (Fig.  2.a). 



Using ‘centroidal’ values 

The  key  issue in the  polynomial  interpolation  is  the  choice of the points to be 
interpolated.  The  natural  way  to do this  is to  choose  the  vertices of each  triangle 
that  share  a  given  point. In this  manner  it  is  possible to obtain  a  set of completely 
independent data as  known  terms of the local  solving  system.  Nevertheless  a  wide 
range in the values of the field  in the vertexes of the triangles  might  cause 
numerical  instability  in  the  solution of the local  system  (Fig.2a), so an average of 
those values is required. A good solution  appears to be  using the value in the 
center of each  triangle  rather  than at its  vertex. In the case of linear  triangular 
elements  this  means  arithmetically  averaging the values  at the three vertices of the 
triangle. This indeed  reduce the swing of the values  at  the  chosen  points  and it 
dramatically  improves  the  robustness of the  methodology  (Fig.2b). 
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Fig.  2 - Detailed  view fiom Fig. 1: difference in percentage  between the 

a) - interpolation  using the vertices of the  surrounding  elements. 
b) - interpolation  using  the  ‘centroidal’  points of the surroinding  elements. 

original  field  and the interpolated  field, in the  case of: 



This  paper will present  results fi-om particular  applications.  Specific  models 
will  be  considered  and an adaptive  mesh  refinement  procedure  will  be  applied to 
them  in order for  the  magnetic  field to be  computed  using  an  existing  finite  element 
code. Then the electric  field  will  be  computed  by  interpolating the ‘centroidal’ 
values of the  triangles  and  results  will  be  shown  to  be  reliable. 

Conclusions 

The paper  addresses  some  issues in  differentiating  data  fi-om  highly  irregular 
meshes.  A  smoothing  procedure  for  differentiating  data  fi-om an adaptive  mesh 
refinement  is  presented  and  results  are  shown to verifl its  usefulness.  The 
methodology  has  been  successful  for  a  electromagnetic  modeling  and it appears to 
be suitable  for any problem  where  an  adaptive  mesh  refinement  procedure  is  used. 
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